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Abstract. A ππ, K̄K, and ρρ(ωω) fully coupled channel model is used to predict the lowest isospin S,
P, D, F-wave phase shifts and inelasticities for elastic ππ scattering from threshold to 2.0 GeV. As input
the S-matrix is required to exhibit poles corresponding to the meson resonance table of the Particle Data
Group. As expected, the ππ inelasticity is very strongly related to the opening of the K̄K channel near
1 GeV, and the opening of ρρ(4π) and ωω(6π) channels in the 1.5 GeV region. The predictions of this
model are compared to the various elastic ππ → ππ amplitudes, that were obtained from analyses of π− p
→ π−π+ n data. The role of the various resonances, in particular the glueball candidate f0(1500) and the
fJ(1710) is investigated.

PACS. 13.75.Lb Meson-meson interactions – 14.40.-n Mesons – 13.25.-k Hadronic decays of mesons –
12.39.Pn Potential models

I Introduction

In heavy ion collisions and in anti-nucleon physics many
pions are produced in the final state. Pion-pion scatter-
ing therefore plays an important role in the final state
interaction of these processes. Our knowledge of ππ scat-
tering is incomplete, in particular above Mππ ≈ 1 GeV.
The dynamics of ππ scattering is often described by ef-
fective meson-exchange in the t-channel. The mechanism
of t-channel exchange works very well in, for example,
nucleon-nucleon scattering. However, for ππ scattering one
may also consider the presence of the many resonances in
the s-channel, a feature that is typical for ππ scattering
but not for nucleon-nucleon scattering. A list of relevant
meson resonances with their properties can be obtained
from the compilation of the Particle Data Group [1]. For
energies larger than 1 GeV, an additional aspect is the
strong coupling of the ππ channel to K̄K and multi-pion
channels, for example, four and six pions.

Previous models for S-wave ππ scattering have been
applied from threshold to 1.4 GeV. For example, separable
potential models have been considered in an approach [2–
5] in which the major focus was to obtain the proper low
energy behavior of the ππ S-wave phase shift, using the
right combination of attraction and repulsion in the di-
agonal ππ interaction, and also to better understand the
structure of the meson resonance f0(980). More sophisti-
cated one-meson exchange models [6–8] have been used
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up to 2 GeV, still within the framework of coupling ππ
and K̄K channels.

In an earlier paper [9] we reported on results within a
coupled three-channel model for S-wave scattering in the
1.0 – 2.0 GeV energy region, and we were encouraged by its
results when compared to the then available S-wave data.
The relevant experimental ππ phase shifts and inelastici-
ties, specifically π+π−, can be found from the analysis by
Protopopescu et al. [10], Grayer et al. [11], Hyams et
al. [12], Bugg et al. [13] and Kaminsky et al. [14]. These
groups have extracted the pion-pion scattering amplitudes
in the Mππ = 0.60 – 1.78 GeV region by obtaining them
from an analysis of the reaction π− p → π−π+ n. Kamin-
sky et al. included also data from the same reaction with
a polarized proton target, which allowed them to sepa-
rate the contributions due to π and a1 exchange. The low
energy ππ data were published by [15]. From all these
extracted data for the reaction π+π− → π+π− it is ap-
parent that there is a rather strong energy dependence of
the phase shifts as well as the inelasticities for S, P, D and
F-wave π+π− elastic scattering. We do not know of any
data above 1.78 GeV, so a model reproducing the existing
data may eventually also serve as a basis for extrapola-
tion to higher energies. Such an extrapolation would be
required to study for example the final state interaction
in the process p̄p→ π+π− [16].

In view of the presence of an extensive set of resonances
as given by the Particle Data Group [1], we have opted in
this paper for inclusion of the various known resonances
in our model for ππ scattering. One can then address the
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question, what is the role of these resonances for elastic
ππ scattering in the various partial waves in the region
of 0.3 – 2.0 GeV. In the energy range up to 2.0 GeV the
dominant channels are ππ, K̄K, ρρ and ωω. Within our
model, as no spin effects have been taken into account, the
ρρ and ωω channels can be described by a single effective
channel, e.g. ρρ.

For example, the set of S-wave resonances that play a
role for the ππ channel are the f0(980) and f0(1370) reso-
nances, but one should also include the recently discovered
f0(1500). While many conjectures about the nature of the
f0(1500) have been made, its role for ππ scattering is still
an open question, and therefore will be one of the ques-
tions addressed in this paper. Another question is the J
value of the reported fJ(1710) resonance. So far one only
agrees that J should be even [1]. In this approach one
can study the implications of the presence of an isoscalar
f0(1710) resonance for S-wave ππ scattering, as well as
the implications of the existence of an isoscalar f2(1710)
resonance for D-wave ππ scattering. In practice we will
impose the condition that the scattering matrix, corre-
sponding to a particular angular momentum, should have
poles at the complex energies of known resonances with
appropriate quantum numbers and, from this input, one
can study the implications for ππ scattering.

The model that we will describe, can be applied for
any angular momentum. In this paper it will be applied
for S, P, D and F-waves. For each angular momentum the
important input will be the location of the correspond-
ing resonances as given by the Particle Data Group [1].
Sections II and III describe the model and show the an-
alytic expressions of the S-matrix for the various angular
momenta. In Sects. IV and V the results for respectively
l = 0 and l = 2 are discussed. This order of angular mo-
menta is chosen because the resonance fJ(1710) may ei-
ther contribute to the S-wave or D-wave scattering. Then
the results for l = 1 and l = 3 are described in Sects. VI
and VII respectively. Finally a discussion of all results and
conclusions follows in Sect. VIII.

II Model

As in [9] we consider three coupled channels of ππ, K̄K
and ρρ, and label them respectively with the channel index
i = 1, 2, 3. Our method of derivation of the scattering
amplitude is generalized to all angular momenta. For each
angular momentum l the Lippmann-Schwinger equation
for the ij -element of the T-matrix at total invariant energy
squared s, is

< p|T lij(s)|q > = < p|V lij |q > −
1

2π2

×
3∑
k=1

∫
dp′p′2 < p|V lik|p′ >

×Gk(p′, s) < p′|T lkj(s)|q > .(1)

Here Gk(p′, s) is the propagator for channel k and V lij is
part of the potential. In this case the potential as well as
the T-matrix are both 3x3 matrices.

We choose a separable form of the potential matrix
elements for each angular momentum l

< p|V lij |q >= gli(p)λ
l
ijg

l
j(q). (2)

As a consequence the T-matrix elements for each l are
also separable

< p|T lij(s)|q >= gli(p)τ
l
ij(s)g

l
j(q), (3)

where τ lij satisfies

τ lij(s) = λlij −
3∑
k=1

λlikX
l
k(s)τ lkj(s). (4)

The functions X l
k are defined in terms of the propagator

Gk and vertex functions glk

X l
k(s) =

1
2π2

∫
dp′p′2glk(p′)Gk(p′, s)glk(p′), (5)

and the functions τ lij(s) can be obtained in closed form.
In the following we will suppress as much as possible

the label l of the angular momentum. For example if the
matrix A for a given angular momentum l is defined by

Aij = λij + λijXj , (6)

the element τ11 has the general form

τ11 =
(1 + λ22X2)(1 + λ33X3)− λ23X3λ32X2

det(A)
. (7)

The elastic ππ scattering amplitude for angular momen-
tum l is then given by the corresponding element Tij with
i = 1 and j = 1, of the T-matrix of (3). The model has a
resonance of angular momentum l if the corresponding T-
matrix has a pole in the complex energy plane at an energy
whose real part is the resonance mass and whose imagi-
nary part is half the resonance total width. Such a pole
corresponds to a zero of det(A) at that complex energy,
as can be seen from (7). The full expression for det(A) is

det(A) = (1 + λ11X1)(1 + λ22X2)(1 + λ33X3)
−λ23X3λ32X2(1 + λ11X1)
−λ12X2λ21X1(1 + λ33X3)
−λ13X3λ31X1(1 + λ22X2)
+(λ13λ32λ21 + λ12λ23λ31)X1X2X3, (8)

with the couplings λlij satisfying

λlji = λlij . (9)

We choose the form factor gli(p) of (2) to be

gli(β, p) =
√

4π
mi

pl

(β2 + p2)l+1
, (10)



          

W.M. Kloet, B. Loiseau: ππ scattering and the meson resonance spectrum 339

where β carries an index i as well as l . For the propagator
Gi(p′, s) we take the form

Gi(p′, s) =
mi

p′2 − p2
i − iε

, (11)

where s is related to pi by

s = 4(p2
i +m2

i ). (12)

The functions X l
i for l = 0 to 3, which are dependent on

the range parameters βli, become in this case

X l=0
i (β, p) =

1
2β(β − ip)2

, (13)

X l=1
i (β, p) =

β2 − 4iβp− p2

16β3(β − ip)4
, (14)

X l=2
i (β, p) =

3β4−18iβ3p−38β2p2+18iβp3+3p4

256β5(β−ip)6
,(15)

X l=3
i (β, p) = (16)
5β6−40iβ5p−131β4p2+208iβ3p3+131β2p4−40iβp5−5p6

2048β7(β−ip)8
.

Again the indices i and l of β and i of p are suppressed.
The above expressions follow from evaluation of the inte-
gral in (5) for real values of p using the definitions (10)
and (11). Details of the evaluation are given in part A of
the Appendix. The integral in (5) is defined for Re(p) ≥
0, and is dis-continuous over the unitarity cut for positive
real p. Therefore it cannot be analytically continued for
complex p with Im(p) < 0. However, the expressions of
Eqs. (13), (14), (15), (16) are continuous and analytic for
all complex momenta p, except for a pole on the nega-
tive imaginary axis, and can therefore be used as analytic
continuation of X l

i(β, p) to complex values of p, even to
the resonance region where Im(p) < 0. One also notes the
familiar property of X l

i(β, p)

X l
i(β, p) = [X l

i(β,−p∗)]∗. (17)

As mentioned previously, the channels i = 1, 2, 3 cor-
respond to ππ, K̄K and ρρ respectively, and we use m1

= 0.1396 GeV, m2 = 0.4937 GeV and m3 = 0.7680 GeV.
Since no spin aspects are considered and the mass of the
ω meson is very close to the mass of the ρ meson, the ρρ
channel can effectively be viewed as representing also the
ωω channel for angular momenta where I = 0. We ignore
the width of the ρ meson, and assume that 4π and 6π
channels are dominated by ρρ and ωω respectively. The
relative momenta, pi, in the ith channel, are related by the
kinematic condition

s

4
=

1
4
M2
ππ = p2

1 +m2
1 = p2

2 +m2
2 = p2

3 +m2
3. (18)

This equation defines the invariant mass Mππ.

Table 1. Relations of Λij to λij and Ri to Xi for angular
momentum l

l Λi Λ2
ij Ri

0 λii/(2β
3
i ) λ2

ij/(4β
3
i β

3
j ) 1/(2β3

iXi)
1 λii/(16β5

i ) λ2
ij/(256β5

i β
5
j ) 1/(16β5

iXi)
2 λii/(256β7

i ) λ2
ij/(2562β7

i β
7
j ) 1/(256β7

iXi)
3 λii/(2048β9

i ) λ2
ij/(20482β9

i β
9
j ) 1/(2048β9

iXi)

Table 2. Particle Data resonances considered in this work

Jπ(I ) 0+(0) 1−(1) 2+(0) 3−(1)

— f0(980) ρ(770) f2(1270) ρ3(1690)
— f0(1370) ρ(1450) f2(1525) ρ3(2250)
— f0(1500) ρ(1700) f2(1710)? ρ3(2700)
— f0(1710)? ρ(2150) f2(2010) —

The above method is equivalent to previously given
expressions [9] for the S-wave elastic ππ scattering am-
plitude,

S11 =
D(−p1, p2, p3)
D(p1, p2, p3)

, (19)

where S11 is the ππ S-matrix element. D is the Jost func-
tion, and D = det(A), i.e.

D(p1, p2, p3)= [(R1 + Λ1)(R2 + Λ2)(R3 + Λ3) (20)
−Λ2

12(R3 + Λ3)− Λ2
13(R2 + Λ2)

−Λ2
23(R1 + Λ1) + 2Λ12Λ13Λ23]/(R1R2R3).

The couplings Λli and Λlij as well as the functions Rli are
dimensionless and their relation to λlij and X l

i of (8) are
given in Table 1. Since the function X l

i has the property
given in (17), the Jost function satisfies

D(p1, p2, p3) = [D(−p∗1,−p∗2,−p∗3)]∗. (21)

For each angular momentum l = J we now require
the S-matrix to have poles at the known Jπ resonances.
A summary of the considered resonances appears in Ta-
ble 2. For example, for Jπ = 0+ the resonances are f0(980),
f0(1370) and f0(1500). For each angular momentum l =
J there are three range parameters βi, and six couplings
λij . The three poles are then chosen at the complex ener-
gies, (ReMππ, ImMππ) corresponding respectively to the
mass of the resonance and half its total decay width. Again
for Jπ = 0+, these energies would be respectively (0.980,
-0.0250), (1.300, -0.200) and (1.503, -0.060) GeV. We re-
quire det(A) of (8) to have zeros at these complex ener-
gies, which leads to six constraints on the nine parameters.
There are several parameter sets that satisfy the above
constraints, as will be discussed below.

III Additional formalism for Jπ = 0+, I = 0

The case Jπ = 0+ needs special attention. We have before
published results [9] for a three coupled channel model as
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Table 3. Different model parameters for l = 0, i.e. Jπ(I ) = 0+(0) (β in GeV), Figs. 1–4

β0 β1 β2 β3 Λ0 Λ1 Λ2 Λ3 Λ12 Λ13 Λ23

2.80 0.85 0.40 1.75 -2.30 4.05 -0.158 -1.300 0.5523 0.0399 0.5425
3.60 1.35 0.50 0.25 -2.70 3.95 -0.678 -5.561 0.3059 0.3173 2.0061
3.80 1.25 0.20 1.00 -2.40 3.80 -0.946 -1.575 0.1689 0.3487 1.2793
2.80 0.85 0.30 3.25 -2.30 4.20 -0.124 -1.013 0.5646 0.3230 0.4532
4.00 1.25 0.30 0.50 -2.30 3.70 -0.914 -2.656 0.1333 0.5098 1.6397

described in Section II. One obtains impressive results for
phase shifts as well as inelasticities in the energy region 0.9
– 2.0 GeV. However, within the model described in Sec-
tion II it is not possible to obtain a realistic description at
energies below 0.9 GeV. The reason is that the potential
for the ππ channel for the S-channel requires an attractive
term as well as a repulsive one. It has been earlier demon-
strated [3] that addition of a second term in the S-wave
ππ potential is successful in describing the low energy be-
havior of the l = 0 scattering. We use then a formalism,
adding such an attractive term and for completeness the
corresponding formulae are recalled in Appendix B. In this
paper this formalism is only applied for l = 0 scattering.

IV Results for Jπ = 0+, I = 0

Since our previous publication of l = 0 results [9], the Par-
ticle Data Group [1] has significantly revised its compila-
tion of Jπ(I) = 0+(0) resonances. At present it contains
the resonances f0(980), f0(1370), f0(1500) and possibly
f0(1710). They occur respectively at the complex energies
(0.980, -0.025), (1.300, -0.200), (1.503,-0.060) and (1.697,
-0.088) GeV. However, the real as well as the imaginary
part of the pole positions have uncertainties and those are
rather large for the f0(1370) resonance.

We are particularly interested in the role played by the
“new” resonance f0(1500), which has been considered as a
glueball candidate. Therefore we start by taking the first
three resonances, f0(980), f0(1370) and f0(1500), as input
for our model and study the consequences for the resulting
ππ scattering parameters. These three J = 0 resonances
together will impose constraints on the analytic expression
for the S-matrix for l = 0. The S-matrix must have three
poles at the corresponding three complex energies. These
constraints determine or restrict the possible values of the
model parameters β0, β1, β2, β3, Λ0, Λ1, Λ2, Λ3, Λ12, Λ13

and Λ23, where, as stated in Appendix B, the index 0
labels the second potential term of the ππ channel. Using
these parameter values, one can then immediately deter-
mine the S-submatrix S11, describing ππ → ππ scattering.
Since S11 for angular momentum l is parametrized by a
phase shift δ and an inelasticity η, viz.

S11 = ηe2iδ, (22)

one obtains the values of δ and η as a function of energy.
The l = 0 scattering parameters are then compared to
experimental data.

There is still an additional freedom in our model. This
is related to the location of the resonance in the complex
energy plane and to the analytic structure of the S-matrix
for the three coupled channels ππ, K̄K and ρρ. Since the
relation between energy and momentum is quadratic, for
each complex resonance energy there are two correspond-
ing complex momenta pi for each channel, one with Im pi
< 0 and a second with Im pi > 0. This defines two possible
sheets in the complex energy plane for each channel. Be-
cause there are three channels, there are all together eight
sheets. The exact location off all resonance poles with re-
spect to these eight sheets determines the specific solution
for the S-matrix.

In our standard choice of complex channel momenta
pi for each resonance, the sign of Im pi is such that the
momenta pi are all close to the physical scattering region.
The physical scattering region has positive real momenta
pi for the open channels, and positive imaginary momenta
pi for the closed channels. This means that a standard
resonance corresponds to a channel momentum pi with
Im pi < 0 if channel i is open and Im pi > 0 if channel i is
closed. The ππ channel is always open, the K̄K channel
opens at 2mK and the ρρ channel opens at 2mρ.

If we put all three resonances f0(980), f0(1370) and
f0(1500), on the standard ππ , K̄K and ρρ sheets, i.e. near
the physical region, (where all three channel momenta
p1, p2, p3 have the required imaginary part, in agreement
with each channel being open or closed), a solution is
found for the parameter set (βi, Λi, Λij) that is given in
the first line of Table. 3. However, the corresponding pre-
diction for the ππ phase shifts is considerably lower than
the data suggests, as can be seen by the dashed curve in
Fig. 1. Therefore we next consider cases where one of the
resonances is not close to the physical scattering region.

From the decay properties of the first three J = 0
resonances one knows that f0(980) and f0(1370) both have
significant couplings to the ππ and K̄K channels. On the
other hand the f0(1500) resonance has a preference to
decay into ηη′, ηη, 4πo, 2πo and 2π+2π−. It is significant
that the decay of f0(1500) into π+π− and K̄K may be
rather small. It suggests that the f0(1500) resonance could
be located on the π+π− or K̄K non-standard sheets (i.e.
its pole location may correspond to a channel momentum
pi with a positive imaginary part).

If we choose to put f0(1500) on the non-standard π+π−

sheet, (i.e. where the relative ππ momentum has a posi-
tive imaginary part), there is a significant improvement of
the model prediction when compared to the experimental
data. The predictions for the ππ phase shifts and inelas-
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Fig. 1. S-wave ππ phase shifts from the three-channel model,
if poles are present for f0(980), f0(1370) and f0(1500). The
dashed curve is the result for l = 0 if the f0(1500) pole occurs
at Im pππ < 0 with the parameter set of the first line in Ta-
ble 3. The solid curve is the prediction for the parameter set in
the second line in Table 3, where the f0(1500) resonance pole
corresponds to Im pππ > 0. Data are from [11,12,14]

ticities are shown as the solid curve in Fig. 1 and Fig. 2.
The corresponding parameter set is given in the second
line of Table 3. The behavior of phase shift and inelas-
ticity above 1.6 GeV will be influenced further by higher
resonances. On the other hand, if we put the f0(1500)
resonance on the sheet, where also the relative K̄K mo-
mentum has a positive imaginary part, the ππ phase shift

Fig. 2. S-wave ππ inelasticities from the three-channel model,
if poles are present for f0(980), f0(1370) and f0(1500). The
dashed curve is the result for l = 0 if f0(1500) has Im pππ < 0
and the parameters of the first line in Table 3. Solid curve is the
prediction for the parameter set in the second line in Table 3,
where f0(1500) has Im pππ > 0. Data are from [11,12,14]

Fig. 3. S-wave ππ phase shifts from the three-channel model,
if poles are present for f0(980), f0(1370) and f0(1710). Solid,
dashed and dash-dotted curves are the prediction for l = 0
parameter sets from Table 3, lines three thru five. Data are as
in Fig. 1

obtains a significant structure in the 1.2 – 1.4 GeV region.
Such a structure is not present in the experimental data.
We therefore conclude that the data for π+π− scattering
are consistent with a f0(1500) resonance that is very dif-
ferent from the f0(980) and f0(1370) and that it couples
only weakly to π+π−. At the same time these data do not
require its coupling to K̄K to be also weak.

The next question is if these data are consistent with
the existence of a f0(1710) resonance. Indeed it is possible
with resonance poles at the complex masses (1.200, -0.250)
and (1.697, -0.300) to obtain an excellent prediction for
the phase shift in the 1.0 – 1.5 GeV region that is in good
agreement with the experimental data. In Fig. 3 and Fig. 4
the S-wave phase shifts and S-wave inelasticities for three
parameter sets, are shown when f0(1710) is included. In
this case one requires a large width for f0(1710) as well
as a low mass for the f0(1370). The corresponding three
sets of parameters are given in the third to fifth line of
Table 3. The phase shifts in this case (see Fig. 3) show
an energy dependence that is closer to the data than the
model prediction in Fig. 1. This makes a strong case in
favor of J = 0 for fJ(1710). The possibility of the existence
of f2(1710) still remains to be considered and the results
for J = 2 will be discussed in the next section. Note that
for our best predictions either with the f0(1500) in Fig. 1
or with the f0(1710) in Fig. 3, our ππ phase shift for 0.5 ≤
Mππ ≤ 0.9 GeV is below the data. This could indicate the
need for a broad scalar-isoscalar resonance below 1 GeV.
Such a state, denoted as f0(400 − 1200) in [1], has been
found for instance in the model of [5].
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Table 4. Different model parameters for l = 2, i.e. Jπ(I ) = 2+(0) (β in GeV), Figs. 5–6

β1 β2 β3 Λ1 Λ2 Λ3 Λ12 Λ13 Λ23

2.400 1.900 0.750 -0.210 -0.252 -0.050 0.0428 0.1222 0.0095
3.600 0.300 1.750 -0.300 1.596 -0.321 0.1059 0.0107 0.0977

Fig. 4. S-wave ππ inelasticities from the three-channel model,
if poles are present for f0(980), f0(1370) and f0(1710). Curves
are as in Fig. 3. Data are as in Fig. 2

V Results for Jπ = 2+, I = 0

The Particle Data Group lists several Jπ(I) = 2+(0) res-
onances, f2(1270), f2(1525) and f2(2010) with the possi-
bility of an additional f2(1710). The first three resonances
occur at complex energies (1.275, -0.092), (1.525, -0.038)
and (2.011, -0.101) GeV. However, a resonance with even
J has also been observed at (1.697, -0.088) GeV and we
will therefore follow two avenues. First, in case A we im-
pose on our model the existence of three resonances in J
= 2 at complex energies (1.275, -0.092), (1.525, -0.038)
and (1.607, -0.088) GeV, while in the second case B the
existence of three resonances at (1.275, -0.092), (1.525,
-0.038) and (2.011. -0.101) GeV will be used as a model
constraint. We will subsequently discuss both cases.

In both cases we use the formulae given in Sect. II. The
S-submatrix S11 for D-waves is then described by the nine
parameters β1, β2, β3, Λ1, Λ2, Λ3, Λ12, Λ13 and Λ23. The re-
quirement that the S-matrix must have poles at the com-
plex energies corresponding to three resonances, leads to
six constraints. However, it turns out that neither case A
nor case B allows a solution within our model if we de-
mand that all three resonances are on the standard sheet
for ππ, K̄K and ρρ (i.e. where all relative channel mo-
menta have imaginary parts close to the physical region).
On the other hand solutions for both cases are found, if
we locate the second resonance f2(1525) on the ππ sheet,
where the relative ππ momentum has a positive imagi-
nary part. A physical interpretation of this would be that

Fig. 5. D-wave ππ phase shifts from the three-channel model,
if poles are present for f2(1270), f2(1525) and f2(2010). Dashed
curve is the prediction from the first l = 2 parameter set from
Table 4, case A, with the f2(1525) resonance with Im pππ > 0,
while the third resonance is the f2(1710). Solid curve is the
prediction from the second l = 2 parameter set from Table 4,
case B, with the f2(1525) resonance with Im pππ > 0, while
the third resonance is the f2(2010). Data are from [12]

the coupling of the f2(1525) resonance to the ππ channel
is weak, meaning that f2(1525) has a rather small de-
cay width into ππ. The Particle Data Group gives that
f2(1525) decays for only 0.8% into ππ while for 88.8%
into K̄K, which would justify to put the f2(1525) pole
not on the standard ππ sheet near the physical region,
but place it on the alternative ππ sheet, where Im pππ >
0. Proceeding, the model gives results for case A as well
as for case B closest to the data if the third resonance is
put on the non-standard ρρ sheet.

Then for case A, which contains the f2(1710) reso-
nance, the parameter set is given in the first line of Ta-
ble 4, and the model predictions for the phase shift and
inelasticity are given by the dashed line in Fig. 5 and Fig. 6
respectively. For case A a structure near 1.6 GeV is present
in the phase shift, and the inelasticity is much too low in
comparison to the data. There is no evidence for a similar
structure in the experimental phase shift.

On the other hand, if we consider case B where there
is no resonance at 1.7 GeV, but instead a resonance near
2.0 GeV, the parameter set is given on the second line of
Table 4, and the corresponding model prediction for phase
shift and inelasticity is represented by the solid curves in
Fig. 5 and Fig. 6. In the phase shift of case B the structure
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Table 5. Different model parameters for l = 1, i.e. Jπ(I ) = 1−(1) (β in GeV), Figs. 7–8

β1 β2 β3 Λ1 Λ2 Λ3 Λ12 Λ13 Λ23

3.200 15.500 3.250 -0.855 -0.991 -1.051 0.0035 0.0843 0.0074
2.600 0.500 0.750 -0.560 2.966 -1.457 0.9756 0.4386 0.2775

Fig. 6. D-wave ππ inelasticities from the three-channel model,
if poles are present for f2(1270), f2(1525) and f2(2010). Dashed
and solid curves are as in Fig. 5. Data are from [12]

near 1.6 GeV has practically disappeared, and the predic-
tion for the phase shift (see Fig. 5) is in closer agreement
with the data. At the same time one finds that for case
B the predicted inelasticity (see Fig. 6) is in much better
agreement with the experimental inelasticity.

It is tempting to conclude that the presence of a
f2(1710) resonance would cause more structure in the l
= 2 phase shift than has been observed experimentally,
and a value of J = 2 for fJ(1710) is therefore unlikely.

VI Results for Jπ = 1−, I = 1

Following again the formalism of Sect. II, the resonances
imposed for l = 1 are ρ(770), ρ(1450) and ρ(1700). They
occur, according to the most recent compilation of the
Particle Data Group, at the complex energies (0.768, -
0.075), (1.465, -0.,155) (1.700, -0.118) [1] in units of GeV.
Therefore the existence of these three J = 1 resonances
again imposes the constraints that the analytic expres-
sion for the S-matrix for l = 1 has three poles at these
three complex energies. These constraints determine the
possible values of the nine model parameters, and lead
to corresponding P-wave phase shifts and inelasticities.
The parameter values for our model are given in the first
line of Table 5. The resulting phase shifts and inelastic-
ities are shown respectively in Fig. 7 and Fig. 8 by the
dashed curve. The different sets of experimental data for
the l = 1 phase shift are in quite good agreement with

Fig. 7. P-wave ππ phase shifts (in degrees) from various ex-
perimental analyses. The curves represent ππ phase shifts for
l = 1 from the three-channel model, if poles are present for
ρ(770), ρ(1450) and ρ(1700). The dashed curve has all reso-
nances on the standard ππ, K̄K and ρρ sheets, while the solid
curve is the result if ρ(1700) is located on the sheet where
Im pK̄K > 0. Data points are from [10,12]

each other. One observes that the model phase shifts are
in good agreement with the data only below 1.3 GeV,
but are too high above 1.3 GeV. The model phase shift
also shows a structure near 1.6 GeV that is not present
in the data. For the l = 1 inelasticity there is no agree-
ment between the different experimental data sets. In one
experimental set of data there is considerable inelasticity
when the K̄K channel opens at 1 GeV, while in others
the inelasticity is mainly driven by the opening of the ρρ
channel near 1.4 – 1.5 GeV. Hence it is not possible to
draw any conclusions about the model predictions from
the inelasticity. The model result as seen in the dashed
curve in Fig. 8 has only a contribution to the inelasticity
beyond the 1.4 GeV region. It is somewhat of a surprise
that a treatment of ρ(770), ρ(1450) and ρ(1700) as being
very similar type resonances in all three channels, causes
the model to fail for energies above 1.3 GeV.

We have explored several of the options of placing one
of the resonances on another sheet. The best agreement
with the experimental data is obtained if we locate the
third resonance, ρ(1700), on the non-standard K̄K sheet
(i.e. Im pK̄K > 0). For this case the corresponding pa-
rameter set is given in the second line of Table 5, and the
corresponding prediction of the phase shift and inelasticity
is given as the solid curves in Fig. 7 andFig. 8. Comparing
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Table 6. Model parameters for l = 3, i.e. Jπ(I ) = 3−(1) (β in GeV), Figs. 9–10

β1 β2 β3 Λ1 Λ2 Λ3 Λ12 Λ13 Λ23

3.800 6.500 0.750 -0.170 -0.188 0.048 0.0013 0.0413 0.0146

Fig. 8. P-wave ππ inelasticities from various experimental
analyses. The curves represent ππ inelasticities for l = 1 from
the three-channel model, if poles are present for ρ(770), ρ(1450)
and ρ(1700). The dashed curve has all resonances on the stan-
dard ππ, K̄K and ρρ sheets, while the solid curve is the result
if ρ(1700) is located on the sheet where Im pK̄K > 0. Data
points are from [10,12]

with the dashed curve, a dramatic improvement has been
obtained for the phase shift. A structure near 1.6 – 1.7
GeV remains however present in the model. There may be
an indication of some structure in one set of experimental
phase shifts, but it is far from compelling. The correspond-
ing model prediction for the inelasticity includes for this
case a larger effect of the K̄K channel, as shown by the
solid curve in Fig. 8. As long as the experimental data
for the inelasticity suffer from the considerable internal
disagreement as shown in Fig. 8, it is hard to draw con-
clusive information from a comparison of this observable
at this time. Other choices of possible sheets do not lead
to further improvement of the predictions.

VII Results for Jπ = 3−, I = 1

For Jπ = 3− there is one well established resonance
ρ3(1690), at (1.691, -0.080) GeV, and a brief mentioning of
ρ3(2250). Since we are interested in the phase shift below
2.0 GeV, the precise location of higher poles seems not
very important. Within our model, having the essential
ingredient of three channels and therefore nine parame-
ters, a single resonance would allow too much freedom in
the parameters. Just for convenience we impose therefore
the condition that there are three resonances, even for Jπ

Fig. 9. F-wave ππ phase shifts from the three-channel model,
if poles are present for ρ3(1690), ρ3(2250) and ρ3(2700). Solid
curve is the prediction for the l = 3 parameter set from Table 6.
Data are from [12,13]

Fig. 10. F-wave ππ inelasticities from the three-channel
model, if poles are present for ρ3(1690), ρ3(2250) and ρ3(2700).
Solid curve is the prediction for the l = 3 parameter set from
Table 6. Data are from [12,13]

= 3−, at energies (1.691, -0.080), (2.250, -0.125), (2.700,
-0.300) GeV. In that case it is straightforward to obtain
a good fit to the experimental phase shift and inelasticity
by the parameter set given in Table 6. The model predic-
tion for that set is given as the solid curves in Fig. 9 and
Fig. 10.
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VIII Discussion and conclusion

In conclusion, we have constructed a three-channel model
which gives a reasonable description of the S, P, D and F-
wave ππ scattering in the 0.3 – 1.7 GeV region. Apart from
the ππ and K̄K channels, the multi-pion channels are de-
scribed as effective ρρ and ωω channels. As a result the
model exhibits branch cuts at the K̄K and ρρ(ωω) thresh-
olds. Subsequently we require the S-matrix to have poles
at the three lowest known resonances for each angular mo-
mentum Jπ(I) as listed by the Particle Data Group [1].
The position of the resonances on the various complex mo-
mentum sheets reflects the decay properties of each reso-
nance.

As a by-product of this investigation one concludes
that the f0(1500) resonance plays a role in S-wave π+π−

scattering that is quite different from that of f0(980) and
f0(1370). Also the S-wave and D-wave π+π− scattering
data seem to be in better agreement with a value of J =
0 for fJ(1710) and at the same time in disagreement with
a value of J = 2. A further surprise for the Jπ(I) = 1−(1)
meson resonances is that not all three resonances ρ(770),
ρ(1450), ρ(1700), play a similar role in all three channels
of this model.

In order to establish how model dependent these con-
clusions are, it would be interesting to study the role of
the various resonances of all angular momenta in other ap-
proaches [5,7]. The present model can also be extremely
useful to describe the final state interaction in reactions
like p̄p→ π+π− [16].

One of the authors (W.M.K.) is grateful to the Division de
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Appendix A: Integrals for X l(s)

In order to evaluate the integrals for X l(p, s) of (5), using
(10) and (11), i.e.

X l(p, s) =
2
π

∫
dp′p′2

p′2l

(p′2 + β2)2l+2

1
p′2 − p2 − iε , (23)

for real p, we define a function Zl(p, s) by

Zl(p, s) =
2
π

∫
dp′p′2

1
(p′2 + β2)l

1
p′2 − p2 − iε , (24)

also for real values of p. The values of Zl(p, s) for l > 1
can be determined, using the iteration method of the Ap-
pendix of [17],

Zl+1(p, s) = −1
l

∂

∂β2
Zl(p, s). (25)

All expressions for Zl+1(p, s) can then be determined from

Z1(p, s) =
1

β − ip . (26)

The expression of (26) for real p can again be analytically
continued for complex p.

The expressions for X l(p, s) follow from the binomial
forms

X0(p, s) = Z2(p, s), (27)

X1(p, s) = Z3(p, s)− β2Z4(p, s), (28)

X2(p, s) = Z4(p, s)− 2β2Z5(p, s) + β4Z6(p, s), (29)

X3(p, s) = Z5(p, s)− 3β2Z5(p, s)
+3β4Z7(p, s)− β6Z8(p, s). (30)

Appendix B: Formulae with a second term in
the ππ potential for the l = 0 scattering

We give here explicit formulae for the Jost function and
for the scattering length when we add, as in [2], a second
term in the ππ channel for the l = 0 scattering. The poten-
tial as well as the T-matrix of (1) are then 4x4 matrices.
We choose the index 0 to label this new term in the ππ
potential of range β0 and strength λ00. We do not intro-
duce any coupling between this term and the K̄K and ρρ
channels, i.e. λ0i = 0 for i = 2, 3 and furthermore λ01 ≡ 0.

The new Jost function can then be obtained in a sim-
ilar way to the derivation performed in Sect. II. One gets

D(p1p2, p3) =
(

1 +
Λ0

R0

)
Q(p2, p3)

+

[
1+

Λ0

R0

(
β1 − β0

β1 + β0

)2
]
P (p2, p3)

R1
.(31)

Here Λ0 = λ00/(2β3
0) and R0 = 1/(2β3

0X0) with, as in
(13),

X0 =
1

2β0(β0 − ip1)2
. (32)

Equation (31) contains the expressions

Q(p2, p3) = 1 +
Λ2

R2
+
Λ3

R3
+
Λ2Λ3 − Λ2

23

R2R3
, (33)

P (p2, p3) = 1+
Λ1Λ2 − Λ2

12

R2
+
Λ1Λ3 − Λ2

13

R3
+
L123

R2R3
, (34)

with

L123 = 2Λ12Λ23Λ13 − Λ2
13Λ2 − Λ2

12Λ3

−Λ2
23Λ1 + Λ1Λ2Λ3. (35)

It can be seen that if Λ0 = 0, (31) reduces to (20) as it
should.
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The ππ scattering length can be calculated as

aππ = lim
p1→0

S11 − 1
2ip1

= lim
p1→0

D(−p1, p2, p3)−D(p1, p2, p3)
2ip1D(p1, p2, p3)

. (36)

As limp1→0A1 = 1, one obtains

aππ = (37)

−2P (p2, p3)/β1−2Λ0/β0

[
Q(p2, p3)+P (p2, p3) (β1−β0)2

β1(β1+β0)

]
Q(p2, p3)(1+Λ0)+P (p2, p3)

[
1+Λ0

(
β1−β0
β1+β0

)2
] .

In (38) p2
2 = m2

1 −m2
2 and p2

3 = m2
1 −m2

3.
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